Extracting the Ontological Structure of OpenCyc for Reuse and Portability of Cognitive Models

Bradley J. Best
Nathan Gerhart
Adaptive Cognitive Systems
1942 Broadway Street
Boulder, CO 80302
303-413-3472
{ bjbest, ngerhart } @adcogsys.com

Christian Lebiere
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213
cli@cmu.edu

Keywords:
OpenCyc, Ontology, Model Portability

ABSTRACT: Large scale general-purpose knowledge ontologies, such as OpenCyc, have been suggested as a means of increasing the portability and reuse of cognitive models through a mapping onto domain-independent language. Previous efforts have revealed that this mapping process is difficult to perform due to several factors including the difficulty of understanding the underlying structure of the ontology and mismatches in representation between the target cognitive modeling architecture and the source ontology. We present a method of extracting, pruning, and visualizing the structure of OpenCyc localized around a given set of related terms and explore a set of examples targeted at the representational assumptions of the ACT-R cognitive architecture. Furthermore, we discuss the implications of both a quick-and-easy mapping method and a more robust methodology. The work described, though in its early stages, provides assistance to both rapid understanding of the OpenCyc structure and the process of mapping domain-dependent terms to a general ontology.

1. Introduction

A central issue in developing a general-purpose layer between simulation environments and cognitive architectures is the representation to be used and its implications for further architectural processing. To attain generality with respect to the simulation environment, commitment to a common, general representation framework is necessary. An additional advantage of this approach is that it should foster on the cognitive architecture side much greater reuse of models than is currently the case. Even for closely related situations, models are usually not reused but instead re-engineered completely to accommodate a different environment. One potential source for such a representational commitment are general ontologies, such as Cyc, that have attracted much investment in recent decades. However, ontologies are fundamentally logic-based formalisms that might not be consistent with the representational, computational, architectural and behavioral commitments made by existing cognitive architectures.

To avoid having the ontological tail wag the architectural dog, it is essential to design a mapping from ontology to representation that is consistent with architectural practice and that leverages the key mechanisms of the target architectures. Ball, Rogers, and Gluck (2004) suggested that the creation of such a layer – the integration of cognitive architectures with general ontologies such as OpenCyc – might provide a remedy to some of the issues involved in cognitive modeling, but they did not go as far as actually implementing such a layer. Wray, Lisse, and Beard (2004) also proposed mapping cognitive architectures to general ontologies as a solution to scalability and interoperability problems within intelligent agent applications, and implemented a mapping of the DAML+OIL ontology (Horrocks, Patel-Schneider, & Harmelen, 2002) to the Soar cognitive architecture. Best and Lebiere (2009) described a series of issues in integrating intelligent agents into virtual environments and a corresponding set of solutions, some realized, some proposed, that related directly increasing the range and portability of cognitive models, and similarly proposed the integration of large-scale general knowledge ontologies, and OpenCyc in particular, as a means for addressing this issue. This paper describes the current state of our continuing research on this topic, including a functioning implementation of a mapping layer that will
be explained in the context of multiple examples. For specificity’s sake, we will focus on the mapping to the ACT-R cognitive architecture (Anderson & Lebiere, 1998; Anderson et al. 2004), but our approach is general enough to apply to related architectures, especially production systems and other symbolic architectures featuring structured representations.

2. OpenCyc

OpenCyc is the open-source version of the Cyc general knowledge base, a large-scale ontology containing both broad general knowledge (e.g., facts relating objects like chairs to their purpose as seating furniture) and specific facts tied to domains (e.g., facts relating specific Army terrain mapping types to the cover and concealment they provide). OpenCyc, created by Cycorp, is written in a proprietary Lisp-like language and includes JAVA and ASCII APIs, as well as a command-line and web-based interface. For more details about Cyc/OpenCyc, see Matuszek et al (2006) and the OpenCyc homepage (www.OpenCyc.org).

3. Extracting Information from OpenCyc

Ontologies are primarily constituted of three types of information: 1) basic terms and their types including hierarchical organization, 2) relations between these terms, and 3) inference rules applying to these terms and relations. Mapping terms and types into ACT-R chunks and their types is reasonably straightforward, but the issue of multiple inheritance across types is much more complex because cognitive architectures typically do not support this mechanism, often limiting themselves, as in the case of ACT-R, to the simpler single inheritance mechanism, for reasons both practical such as efficiency of implementation and theoretical such as cognitive plausibility (e.g., limits on the size of a unit of representation). Basic options to address this issue within the context of the ACT-R architecture include:

• Leveraging the simpler, single inheritance architectural mechanism and treating multiple inheritance in a separate way

• Leveraging other architectural mechanisms such as subsymbolic partial matching and activation spreading mechanisms

• Representing the terms and their types explicitly and requiring that the architecture perform type inferences in an interpretive rather than automatic way

These approaches are potentially complementary, but their implications for processing are fundamental. For instance, the simpler, more explicit and modular representation schemes also impose the most demanding processing requirements upon the architecture. Our research approach is to be strongly guided by behavioral and neural knowledge of representation to derive a robust and effective compromise between these options.

Relations between terms are potentially straightforward to represent but inferences are not. Like terms, there is a natural trade-off between the complexity of the representation and the efficiency of the architectural processes that can apply to it. One possibility is to focus on purely representational issues and consider knowledge-based inferences to be beyond the scope of an interface between environments and architecture. That is often the approach taken in modeling where knowledge and control are tightly intertwined and optimized to the task at hand, but the generality of the representation commitment in this case imposes additional constraints on the necessity to be able to reason upon the knowledge in order to compensate for the lack of hardwired control.

The approach we have taken has 4 main steps, 1) determining a appropriate term translation, 2) pruning an extracted hierarchy, 3) visualizing the results, and 4) automatically generating ACT-R chunk types from the resulting hierarchy; each step is described in detail below. All examples use domain-specific terms from the dTank virtual environment (Morgan et al 2005).

3.1 Determining Appropriate Term Translation

For any domain, the first (and potentially the most difficult) step is to determine an appropriate translation from domain-specific terms to the general OpenCyc vocabulary. In section 4, we discuss the implications of two ends of the translation spectrum: a simple lookup vs. an in-depth exploration of the OpenCyc structure and implied meaning.

Cycorp provides a web-based browser (the KB browser) for exploring and manipulating OpenCyc. Using the KB browser, one can find close matches based on English “pretty strings” (e.g., a search for "tank" returns links to the OpenCyc constants Tank-Vehicle and LiquidStorageTank). Stopping at this result is what we refer to as the simple lookup. Note that the simple lookup procedure uses the domain-specific name as the most important (i.e., the only) criteria.

To perform a more accurate search, one would use the simple lookup as a starting point and dig for more specific constants. It is important to mention here that the full meaning of an OpenCyc term is best understood as a combination of 1) the name, 2) the related (more general/specific) terms, and 3) the “comment” tag associated with the term. For a walk-through of the general search procedure, see the tutorial (Cycorp 2002).

However, a question remains: what feature of the search term is most important? Is it the visual representation of the term in the environment? Is it the name of the term in the environment? Or is it the behavior of the term in the environment? The speed and accuracy of translating terms
from a domain into OpenCyc terms are impacted by the choice of the most important feature. For example, consider the terrain feature "Woods" from the dTank environment. When interacting with dTank, there is a terrain object that appears to be made of pine trees and is the same size as the tank. It is named "Woods" by the dTank authors. When an agent is touching the "Woods" object, several things happen: 1) the agent can only travel at a fraction of their maximum speed, 2) projectiles are less likely to hit and damage the agent, 3) the amount of the map that the agent can see is restricted, and 4) the agent is less likely to be visible to other agents (the amount depends on the terrain the other agents occupy).

All four of these features define the "Woods" object in dTank, but it is highly unlikely that we can find a term in OpenCyc that matches all of these features exactly. Therefore, we have to choose the level of accuracy that is sufficient for our purposes. As an illustration, however, we present the process of determining several different possible terms, in increasing accuracy.

If we choose the name, "Woods", as most important, a simple lookup returns WoodedArea. The comment associated with WoodedArea is "A specialization of GeographicalRegion. Each WoodedArea is a place with a lot of trees." If we choose the visual representation of "Woods" as most important, a deeper search starting from WoodedArea returns ConiferForest-C4 as a candidate equivalent term. OpenCyc describes ConiferForest-C4 as "A specialization of ConiferForest. Each ConiferForest-C4 is a GeographicalRegion that is 75-100% covered with coniferous trees." The good news from this search is that ConiferForest-C4 is a specialization of WoodedArea, so all attributes that apply to WoodedArea also apply to ConiferForest-C4.

Ultimately, it appears that the most reasonable term in OpenCyc for "Woods" is "ConiferForest-C3" (a less dense version of ConiferForest-C4). It matches "Woods" on a semantic and visual level. Additionally, ConiferForest-C3 generalizes to CanopyClosure-Dense, ConcealmentFromAerialDetection-Good, and CoverFromDirectFire-Good (descriptions which closely match the cover and concealment properties of "Woods"). The effect of slowing agents is not quite covered, but the proportion of slowing (50%-75%) is at least similar to the density of the trees. Despite a rather exhaustive search of OpenCyc, our term is still not quite perfect.

The simple lookup translation for "Woods" is "WoodedArea", while the in-depth exploration translation is "ConiferForest-C3". There was substantial work in determining the single best OpenCyc term for "Woods"; for a discussion of whether or not it was worth it, see section 4.

It is important to note here that the terms in OpenCyc are quite probably domain-specific. In fact, the term "ConiferForest-C3" is a vegetation code from the US Army Field Manual 5-33. However, the important fact is that the model is now using OpenCyc vocabulary as a domain-independent abstraction. Any model using this abstraction can be deployed in a new environment or domain as long as a translation from the target domain vocabulary to OpenCyc vocabulary is performed. We argue that the translation process is more efficient than re-engineering the model to perform in a new environment.

3.2 Pruning the Hierarchy

We have created software written in Common Lisp that communicates with OpenCyc through an ASCII API. Once a collection of domain-specific terms have been mapped to OpenCyc terms, we can extract the hierarchical structure from OpenCyc. This structure is a multiple-inheritance tree with a root at "Thing" (the most general OpenCyc term) and leaves for each of the supplied terms.

Once the web of terms has been extracted from OpenCyc, some amount of pruning can be done; the level of pruning (or possibly expansion) depends highly on the intended use of the web. For instance, a web pruned from the root down to the most specific parent term (Lowest Common Genl or LCG) is a useful way to get an overall sense of the complexity and structure of OpenCyc. Pruning to just the key terms (terms that contain more than one child term) results in significant pruning and is probably the best, most compact way to visualize the relationships of the terms to each other. The resulting web can also be pruned to a single-inheritance tree. The single-inheritance tree may be the most useful for mapping to ACT-R since it matches the single-inheritance mechanism in ACT-R. Visualizations of each method of pruning are shown in the next section, “3.3 Visualizing the Hierarchy”.

Our current pruning methods involve selecting nodes and roots for pruning based on the count of leaves reachable from each node. Roots which have child nodes with the same count are removed as a method of automatically finding the LCG. Nodes which have no increased count compared to child nodes are removed as a method of simplifying the branches of the hierarchy. When creating the single-inheritance tree, parents with lower counts are retained; the object is to get the deepest, skinniest tree possible which would correspond to the richest discrimination tree in representation space.

Because the pruning and visualization of the OpenCyc structure is quick and automated, we recommend exploring all versions of pruning and use the resulting visualization to determine the structure that is most useful for the desired task.

3.3 Visualizing the Hierarchy

We have come to the realization that understanding terms and their relationships is nearly as hard a problem as determining a relationship in the first place. Thus, we
have invested considerable effort in developing methods for quickly visualizing any mapping of ontology to cognitive architecture.

Our software incorporates the open-source graph visualization software, GraphViz (www.graphviz.org). We translate the OpenCyc structure into a GraphViz-compatible representation of nodes and edges; GraphViz automatically handles the layout and visualization of the structure.

The following figures are representations of different pruning methods applied to the same structure; the OpenCyc structure connecting all of the terrain objects from dTank. For all figures, the green boxes represent the initial list of terms that was used to generate the structure (the user-determined OpenCyc terms). The ellipses represent the top of the object hierarchy (LCG), and white boxes represent intermediate terms that were extracted due to their connection to both the LCG and the atomic terms. Note that we do not include the completely unpruned structure up to “Thing” as the image is only readable when poster-sized. Indeed, the unpruned structure up to the LCG (GeographicalThing) is barely readable.

Figure 1 is the extracted web of all seven dTank terrain concepts up to their LCG: GeographicalThing. The labels are intentionally unreadable; the point of including the figure is to illustrate the scope and complexity of the hierarchy up to the LCG. Figure 2 is the same structure, but pruned to only the key terms. Only the terms that directly decompose into more than one term are considered key terms. Notice that the entire left half of Figure 1 is pruned down to GeographicalRegion, OutdoorLocation, and CoverFromDirectFire-Good in Figure 2. Also note that Figure 2 provides just as much information as Figure 1 about the similarities between terms.

Figure 3 is the web from Figure 1 pruned to just single-inheritance. Figure 4 is a fully-pruned version of Figure 3, where only key terms are included. Note that there is very little difference between the two fully-pruned figures; Figure 2 has only one more term than Figure 4, which is CoverFromDirectFire-Good.

Figure 1: Full Hierarchy of dTank Terrain Terms up to the Lowest Common Genl. Node labels are deliberately unreadable; the same structure (parsed) is presented clearly in the following figures.
Figure 2: Pruned Hierarchy of dTank Terrain Terms up to the Lowest Common Genl

Figure 3: Single-Inheritance Hierarchy of dTank Terrain Terms up to the Lowest Common Genl

Figure 4: Single-Inheritance Pruned Hierarchy of dTank Terrain Terms up to the Lowest Common Genl

In a single inheritance hierarchy derived from Figure 4, this term would be represented as a relation, CoverFromDirectFire, between various object types and their value, Good. This same relation with different objects types, e.g. GrassyRegion, and values, e.g. Poor, could also be used to represent related terms such as CoverFromDirectFire-Poor. This approach born out of the necessity of leveraging a cognitive architecture with a limited single-inheritance mechanism thus has a number of advantages. First, it makes explicit the semantic relation between apparently unrelated terms CoverFromDirectFire-Good and CoverFromDirectFire-
Poor (and CoverFromDirectFire-Excellent, etc.) and thus provides a unification of those terms. Second, it also introduces a distinction between terms in the hierarchy that correspond to fundamental distinctions (e.g., a human-built structure vs. a natural feature), and thus are mapped to the type hierarchy in the cognitive architecture, and those that correspond to superficial, potentially changing features (e.g., a forest provides good cover from fire unless it is sprayed with defoliant) that are mapped to relations binding objects to properties and their values. However, as previously mentioned, the needs of the user should determine which of the four representations is most useful.

While helpful, the visualization process is not the end goal of the mapping process. It is merely a step for verification that the extracted hierarchy makes sense. Once the user is satisfied with the translation from domain-specific terms to analogous OpenCyc terms, they can implement the type hierarchy in a cognitive architecture. In our case, we will be focusing on the ACT-R cognitive architecture, but other mappings are certainly possible (see Wray, et al. 2004 for an example using DAML+OIL and Soar).

3.4 Creation of ACT-R Representation from OpenCyc

Given the methods described above, we will now apply this to a concrete example to demonstrate the construction of a type hierarchy derived from OpenCyc for the ACT-R cognitive architecture. The ACT-R architecture has two primary forms of memory representation: a declarative representation instantiated through chunks and their associated type definitions, and a procedural representation that is instantiated through productions. The OpenCyc concept hierarchy maps most clearly onto a declarative representation, which can then be used within the ACT-R architecture as the basis for inference.

In particular, ACT-R supports a type inheritance hierarchy within its definition of chunk types. This type inheritance can be leveraged within the procedural matching phase (conflict resolution), allowing procedural knowledge to be applied to goal types that are sub-types of the target type for that procedural knowledge. For example, procedures for general navigation might apply to the GeographicalThing concept defined by OpenCyc, in which case they would also apply to all individual types of geographical objects derived from this parent class, thereby supporting generalization and specialization of procedural knowledge. Using the extraction software we have developed, the terms extracted in figure 4 above produce the following mapping to a set of ACT-R chunk types:

```
(CHUNK-TYPE (SLOPE-TOPOGRAPHICAL
  (:INCLUDE GEOGRAPHICALREGION)))
(CHUNK-TYPE (ROADWAY
  (:INCLUDE GEOGRAPHICALREGION)))
(CHUNK-TYPE (GRASSYREGION
  (:INCLUDE GEOGRAPHICALREGION)))
(CHUNK-TYPE (OUTDOORLOCATION
  (:INCLUDE GEOGRAPHICALREGION)))
(CHUNK-TYPE (SLOPE-VERYHIGHGRADIENT
  (:INCLUDE SLOPE-TOPOGRAPHICAL)))
(CHUNK-TYPE (SLOPE-MODERATELYHIGHGRADIENT
  (:INCLUDE SLOPE-TOPOGRAPHICAL)))
(CHUNK-TYPE (CONIFERFOREST-C3
  (:INCLUDE OUTDOORLOCATION)))
(CHUNK-TYPE (ROOFCOVERAGE-DENSE
  (:INCLUDE OUTDOORLOCATION)))
```

This extraction of ACT-R chunk types, in its current form, enables the segregation of procedural knowledge according to that type hierarchy. Thus, an element of procedural memory (production) that applies to the OutdoorLocation type would also apply to ConiferForestC3. Importantly, the converse is not true, and procedural memory that applies to ConiferForest-C3 is not applicable to all OutdoorLocation chunks and sub-type chunks. Thus, the chunk types are defined in a way that directly supports the inference mechanisms of the ACT-R architecture. For instance, the following preamble for a production would apply to any GeographicalRegion, including the ConiferForest-C3 subtype:

```
(p match-to-geographicalregion
  =goal>
  isa GEOGRAPHICALREGION ...
)
```

Thus, procedural knowledge defined as being applicable to GeographicalRegion can be automatically applied to ConiferForest-C3. The corresponding preamble for a production that would apply only to the ConiferForest-C3 type, but not the parent GeographicalRegion type, could be written as follows:

```
(p match-to-coniferforest-c3
  =goal>
  isa CONIFERFOREST-C3 ...
)
```

As another example, using the domain vocabulary defined above, knowledge that applies to a Wall-Vertical is not applicable to GeographicalRegion, and vice-versa. However, knowledge applicable to GeographicalRegion does apply to both GrassRegion and Roadway.

More generally, the mapping of the OpenCyc concept hierarchy onto chunk types within ACT-R supports
4. Considerations for the Mapping Process

We have chosen to pursue a limited static mapping of terms extracted from OpenCyc to the cognitive architecture, largely for performance reasons. Ontologies are logic-based formalisms that often make unreasonable runtime demands upon the systems operating upon them (e.g., rule-based inference). However, embedded agents in real-time environments (as is the case of most of our target environments) are under severe time constraints to produce effective behavior. Moreover, cognitive architectures impose additional constraints upon the space of acceptable processing mechanisms, ruling out some (e.g., logical inference) in favor of others (e.g., subsymbolic mechanisms of activation spreading and matching, adaptive learning processes, etc). These considerations have been extremely important in providing a set of constraints for designing a feasible interaction between OpenCyc and a cognitive architecture.

The OpenCyc representation provides several significant challenges in integration with the ACT-R cognitive architecture. Chief among these are OpenCyc representational commitments to multiple-inheritance and the storage for attributes of instances of concepts as asserted facts. By comparison, ACT-R relies on single-inheritance and stores attributes as slots of chunks.

The inheritance issue was described in detail above. The second issue, the representation of attributes, however, is worth unpacking further. In ACT-R, attributes of chunks are commonly included as part of the chunk type, so an individual chunk (an instance) supports direct access to every attribute that is defined for that chunk. So, for example, a chunk encoding a block in a blocks world might encode the location and color of the block directly as slots of the chunk. Alternatively, the suggestion from our mapping efforts using OpenCyc is that attributes might instead be solely represented as declarative facts asserted about the chunk. This would require a second chunk type, such as hasColor, which might have slots for an instance of an object (such as the block) and a color (such as red), to express the value of an attribute of an instance. However, while this representation might be scalable, and might easily support hundreds of attributes for instances of concepts, it could also cause significant problems in terms of model construction, requiring any model using this more flexible representation to crawl the links in this network to perform even simple tasks. This issue bears further research, but also highlights the utility of performing the mapping from a large-scale ontology to a cognitive architecture — it brings the representational assumptions of the cognitive architecture into sharp relief.

In the previous section, we presented two vastly different methods for determining a translation from domain-specific terms and their OpenCyc counterparts. All previous figures showed the structure obtained by the in-depth exploration method. The quick lookup translation of the same terms created a similar, but not identical structure (structure not shown). However, it is unclear as to whether the differences between the two structures present any problems to the main goal, which is model reuse and portability.

It would seem that the time saved in the mapping process (on the order of 15 minutes per term) presents a strong case for using the simple lookup procedure. The terms obtained from this procedure are not as apparently accurate as those mapped manually, however, when it comes to describing the behavior of the terms in the specific domain. In fact, one runs the risk of creating a mapping that is still domain-specific, despite the use of generic vocabulary. If the attributes related to the terms are idiosyncratic, then the term cannot be reused in a different domain. The time required to rectify the situation is likely of magnitude less than the time needed to create a new model from scratch. Ultimately, the proposed abstraction to domain-independent vocabulary could present a substantial step towards model reuse and portability.

5. Discussion and Conclusion

The choice of whether to perform the representational mapping between OpenCyc and a cognitive architecture statically or dynamically has significant implications. While dynamic access to the ontology and knowledge base is more general, static mapping requires less metacognitive management on the part of the architecture and is easier to manage. However, given the size of ontologies such as OC, it would impose significant capacity commitments upon the architecture. The solution we have employed here is a limited static mapping of key representational terms. A full static mapping is not, as of this date, feasible within the ACT-R cognitive architecture, but this is a practical limitation rather than a theoretical one and may be overcome as the architecture is applied to larger-scale problems and domain-specific models are integrated into increasingly complex assemblies converging to the knowledge of a human individual (or collective). We are also currently investigating the implementation of dynamic access to additional knowledge, as a means of balancing the trade-off between knowledge and memory requirements.

Another area where the current paper has been somewhat silent is that of inter-agent communication. The ontological approach taken here might be used to provide a solution not only to the acquisition of information from,
and the expression of actions upon, the environment but also to the communication between entities operating in that environment. For instance, plans of action might be expressed using the same terms with appropriate augmentations, potentially allowing even agents developed using different formalisms to communicate with each other. This use would correspond to the more recent purpose of ontologies, which is to facilitate and integrate communication across electronic media.

6. Acknowledgements

This work was funded by the Office of Naval Research, contract number N00014-07-C-0912.

7. References

Author Biographies

BRAD BEST is a Principal Scientist at Adaptive Cognitive Systems, LLC, in Boulder, CO., where he focuses on cognitive modeling of adaptive behavior in complex environments, especially those that have significant spatial and temporal aspects. His current research interests include integrating perception with decision making in robotic and virtual agents and the development of methods for analyzing, understanding and visualizing model behavior in these environments.

NATHAN GERHART is a Research Programmer at Adaptive Cognitive Systems, LLC, in Boulder, CO. He is the resident subject matter expert for performance in virtual environments and is currently writing software to assist with the exploration and optimization of parametrized models as well as the OpenCyc interaction software discussed in this paper.

CHRISTIAN LEBIERE is a research faculty in the Psychology Department at Carnegie Mellon University. His main research interest is computational cognitive architectures and their applications to psychology, artificial intelligence, human-computer interaction, decision-making, intelligent agents, robotics and neuromorphic engineering.